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DERIVING A UTILITY FUNMCION FOR THE ECONOMY

George B. Dantzig

Abstract

The model we describedhas the same general features of the PILOT

dynamic macro-economic model of U.S. designed to assess the long term

impact of foreign competition, innovation, modernization, and energy

needs. We derive the aggregate demand function of final consumer from

individual demand functions in order to state its mathematical properties;

we then estimate its parameters by a fit to empirical data. The

equilibrium conditions are those of the Arrow-Debreu model, the only

unusual feature is that investors calculate their rate of return using

discounted normalized prices of future periods. If investors choose to

normalize intra-period prices in the usual way by requiring that they sum

to unity (or equivalently their average value is unity), the inverse demand

functions turn out to be non-integrable. Equally satisfactory from the

investors' point of view, is for them to choose instead to normalize

intra-period prices.by making these equal to n/(lt'Hln)1/2 where H

is a given positive-definite matrix and n is the vector of intra-period

prices. In the latter case, we--how that the inverse-demand functions are

integrable and derive a utility function for the economy which if maximized

subject to the physical-flow constraints implies the equilibrium

conditions. /
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DERIVING A UTILITY FUNCTION FOR THE ECONOMY

George B. Dantzig

We begin by describing the structure of the t = 1, ... , T time

period model. It has the same general feature as the PILOT model of U.S.

See references [12, 13].

EQUILIBRIUM MODEL. For t = 1, ... , T:

Dual
Cap. Req. Cap. Avail. Corresp.

() + BtY +D Y + k :a > 0

(2) -AYt + x < 0 % > 0

- Product. + Consump.

--- Investor rate of return - Endow. Value

T T T
(3) -B t aBT + ATt <- Dtat+1 :fYt > 0

t t t t---

(4) n + t+1 Ft(Xt ) < 0 + : X > 0

Inverse demand function

(5) Ctot =0, 71tt =0, YtY =0 , XXt 0

where variables with a hat over them are resp. the slack vectors for the

inequalities (I), ... , (4) and 6 + is the discount factor. Relations

(5) are the complementary-slackness conditions. See references [1,4,14].

Based on joint work with P.H. McAllister and J.C. Stone.
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The matrix structure is skew symmetric except for the term in lower

right diagonal. It is of interest to note that if the economy were driven

by a utility function of the form U = 2 6-  U t(X t), the Kuhn-Tucker

conditions derived by maximizing U subject to primal physical-flow

conditions (1) and (2) would have exactly this structure where U t/FX t

- - F (X ). If the latter condtions hold, we say the vector functions
t t

Ft(X t) in the model are integrable. See references [3,10].

(1) states that the capacity requirements to meet production and

investment levels Yt in period t must not exceed capacity carried down

from period t-1 plus any exogeneous capacity supplied k t . For period 1,

the term +D Y is omitted; k is the initial capacity (endowment)
0 01

vector.

(2) states that the consumption vector Xt of the final consumers

must not exceed the net-output of production after investment. The

consumption vector of government services is treated as part of AtYt and

is not shown separately.

(3) states, in case of an intra-period production activity J, that

production level Y (j) will rise to the point of non-profitability and if
t

strictly non-profitable will not be used because of the complementary

slackness condition YtYt M= 0. In the case of an inter-period investment

activity, the investor must receive his discounted rate of return 6 or he

• won't invest. Prices nt are normalized intra-period t prices

discounted by 6 On the right hand side, Do t+ is the discounted

3
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value of future capacity (endowments). For t = T this term is set - 0.

Note: Undiscounted prices will be denoted by it"

(4) is an equation for Xt > 0. It relates prices to consumption.

The direct demand function is an expression of the form Xt M 9 (t' ntX t)

where 9 is a homogeneous function in nt of degree 0 and n'Xt  is

the attained level of aggregate income It .  It follows from the homogenity

of 9 that the inverse demand function F(X) (expressing nt as a func-

tion of X ) can only determine prices within a scale factor. It is the
t

freedom to select the scale factor which allows us to choose the formula

for normalizing intra-period prices %t" We define F(X) as equal to

normalized intra-period prices.

We assume that the investors will want to use discounted normalized

intra-period t prices in calculating their rate of return. If

intra-period prices %t are normalized by scaling them so that their

tt
average is unity then the average of the discounted prices n l is

Since it M 8 F (X ), when X > 0, this implies that F satisfies
tt t t t

eF t(X t) I for all choices of Xt where e - (1/n, ..., I/n) and n is

the number of components of Xt

If this usual way of normalizing intra-period prices is used, i.e., so

that their average is 1/n or as we prefer 1, it will turn out, however,

that the equilibrium problem (1), ..., (5) is non-integrable, i.e., there

does not exist a utility function which if maximized subject to physical-

flow conditions (1) and (2) and (Xt,Y) 0 yields the equilibrium solu-

tion. We will show, on the other hand, that there is another way to do
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the normalization, equally satisfactory from the view point of the

investor, that is integrable and from which it is easy to derive an

aggregate utility function for the economy.

Derivation of the aggregate demand function

Let It  be the value of endowments used to produce the consumption

vector Xt  in period t. In terms of the prices of the model, the value

of endowments available to period t is aT (D Y k ) a B Y
t t-1 t-1 +t t t

T
and the value passed down to period t+l is a t+iDtYt Their difference

is It  by definition. By (1), (2), and (5), it is clear It  n tXt , the

aggregate take-home income. We will often omit the subscript t to

simplify the notation; thus we write I - I .

We will use the index i to denote the i-th consumer; I~ I tot

denote his personal income in period t; and Xi  to denote his
- t

consumption vector. Let U i(X i) denote his utility function, and let a

be his assumed constant share of aggregate income I. The price vector

corresponding to the components of X is denoted by =
t t

The budget constraints are

(6) n'Xi - aI ;

'X-i . I, where Ea -1.

At equilibrium we have for individual i,

(7) MU i(xi) - (%'X)] / 8Xi - 0

where the Lagrange multiplier X is chosen so that his budget constraint

'xi - a is satisfied.

5
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We approximate U i(X i) in the neighborhood of an equilibrium solution

by a general quadratic function of the form

(8) Ui (X i) (MI S i)T X - (1/2) (X )T M i(X i) + Constanti

where M in general is a symmetric non-singular matrix. We assume Mi

to be positive definite and S to be a fixed vector such that Xi < < S

for any X attainable by the model. Of course S- St is strictly

positive; it could be different for different t. In the PILOT model

St S i grows proportional to population size, i.e., as the number of

individuals i grows.

We substitute the approximation (8) into (7) obtaining

(9) M I(S -X ) - X.n ,

(10) Si-Xi. Xi-Hi , where Hi = (M I)-I

Note that H I (M )- 1 is also symmetric and positive definite.

We can now use the budget constraint to determine X. Multiplying

(10) by %' on the left, setting %'Xi - 1I1, we can solve for X and

substitute into (9). This yields the local approximation for the demand

function of individual I in the neighborhood of the equilibrium solution

as a function of prices and aggregate income I:

t sH n
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Summing over all i and setting S - ESi and X = ZX yields the

local approximation to the aggregate demand function.

In'(Si - a S) + 1

(12) S X • (i 71 ' H i 7 i n 'H n

Denoting the bracket terms above by G and H, we have

(13) S - X " an + (it'S - I) • Hit

Note G, H are square symmetric matrices because they are weighted sums

of square symmetric matrices Hi whose elements are functions of n

only. It is easy to verify that 6, H have the following properties:

(14) t'Gt =  0 , it,' i 1

for all n. Moreover, H is positive definite because it is a non-negative

i
sum of positive-definite symmetric matrices H . The individual demand

functions (11) and the aggregate demand function (13), for fixed prices i,

are locally linear in Ii = a I and I resp.

Je now make a fit to empirical data to see if the local linear

approximations can be extended to a broad range of 1. For this purpose

we will need survey data of personal consumption as a function of take-home

income at fixed prices and we will need the distribution of take-home

income ai" See references [2, 7, 81.

7
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Personal consumption

At fixed survey year prices n0  (n 01 " ItOk"'" On) personal

consumption Ck(I) during the survey year of item k, say food measured

in physical units, is known from survey data as a function of personal

income I , see Figure 1:

k Food

I = a I =I Personal (take-home) Income

FIGURE 1: Consumption of Food as a Function of Personal Take-home Income

(prices are fixed at it - 0 ))

Since the sum of the consumption of item k weighted by prices n Ok > 0

over all items adds up to take-home income, it follows that if some curves,

like food, display a decreasing slope with increasing income I then

others must show an increasing slope with increasing income. In PILOT,

expenditure patterns Ck(I) of individuals for some future period t at

constant prices t0 are assumed to be the same as the survey year with

some adjustments to reflect any known trends in "taste".
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Take-home income

The distribution of take-home income Ii  expressed in base-year

dollars has changed over the years in U.S. but generally retains the same

shape except it spreads out proportionally as per-capita take-home income

Y increases. That is to say, the proportional share of endowments ai

has remained more or less constant over the years, [8,2].

I ( 1 I

I I ~ 12

1 12

I = Personal (take-home) Income

i
FIGURE 2: Distribution of Personal Income I = I1 and 12

when average income is I and 12 resp.

Letting p(II) denote the distribution of personal take-home

income when per capita income is I, we are assuming that p(lI) can

be derived from p(Ill 0) by

(15) p(Cly) = e.p0Il 0)

where 8 1 0o/I.

9
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Per-capita consumption

At fixed survey-year prices no, average (per capita) consumption of

item k as a function of average income Y can now be derived from

personal consumption curves Ck(I) and the distribution of income

p(I'iY) by convolution:

(16) X tk(I) = f p(Il]) Ck (1) dl
I=0

-0

= f p(01110)Ck(1)HI, 0 0/1
I=0

Note that Xtk(I) is per-capita consumption as a function of per-capita

income I expressed in survey-year dollars and assumes prices are fixed

at t0 . Period t prices, expressed in survey year dollars, may differ

from nt0 ' Later on we derive how it varies with nt

At fixed survey-year prices n0 using personal consumption data as

a function of take-home income and the observed distribution of income, the

functions X tk(I) have been computed in the manner described for over

a hundred commodities by M. Avriel and for aggregated key commodities

(using more recent data) by P.H. McAllister. These functions turn out to

be remarkably linear. See Figure 3 and references [7,2,8].
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,. . . . ° ..- . . . , ° . .. * . .. .G . . . " . - • • . . . - - . . " . • , - • . . - - - - . - - . - . .



k -Food

(almost linear)

I-per capita take-home income

FIGURE 3: Consumption of Food as a Function of Per Capita
Take-home Income (prices are fixed at ntW

Global versus Local Fit

At fixed survey year prices 1102 individual demand functions do not

i
appear to be linear with I I see Figure 1. However, we obtain an

excellent global fit to the aggregate demand functions using a linear

function of per capita income I, see Figure 3; or multiplying Y by

population size to obtain 1, by a linear function in 1. Therefore we

accept (13) as the form of our global fit to the aggregate demand

function. We think of S - S t as a kind of "satiation" vector many times

larger than any X - X attained in any period.

Returning now to our aggregate demand function (13), we now postulate

that as aggregate income I approaches- 1%S, the income sufficient to

purchase the satiation vector S, aggregate consumption X tends to S.

We are assuming:

(17) X S as I Ro o IS

". J Xtk11



In (13), if we fix prices n and let I + %'S, we observe that Gn F 0

for all n so that wa can drop the first term of (13). Now H, in the

second term, is a symmetric positive-definite matrix whose elements depend

on n with the property that 'H n I for all %; it follows that the

general form of H is

I

(18) H

where H is a positive-definite matrix whose elements can depend on n.

Our global fit 2 to the aggregate demand function thus reduces to

(19) S-X (W'S-I) . H , <S

For purposes of estimation of S and H, we assume H to be a constant

matrix as well as symmetric and positive definite.

To obtain the inverse demand function F(X) that expresses % in

terms of X, we solve (19) for i. Since I - %'X, the right-hand side is

a homogeneous function in n of degree 0 implying that x can only be

determined within a scale factor. Clearly i is proportional M(S-X)
i-1

where M = H71 and we are free to choose the proportionality factor so

that the prices of the model are automatically normalized before discount-

ing. In the model relation (4), i t 6- t+ l F(X) when X > 0 so that F(X)

denotes normalized intra-period prices.

2McAllister has estimated S and H in (19) using 22 years of
empirical data of per-capita consumption patterns, per-capita take-home
income, and prices under the assumption that H is a constant matrix that
is symmetric and positive definite. See reference [3].
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If investors calculate their rate of return based on intra-period

prices 1t normalized by it / e t where e - (1/n, ..., 1/n), then

the scale factor is chosen so that normalized intra-period prices F(X)

satisfy

.. 1 •(SX = -1
(20) F(X) Me(S-X) SM H

Note eF(X) I for all X and F(X) does not depend on the scaling of

M. Note that when prices r* - (1, 1, ... , 1) that (1, 1, ... , 1)
t

are normalized prices.

However, if investors calculate their rate of return based on intra-

1K nrmalzed y ir H -1/2
period prices it normalized by %t)/( H wt) , the scale

factor is chosen so that normalized intra-period prices F(X) satisfy

(21) F(X) - • M(S-X) M - H-

[(sx)T M(S-X)] 1/2

T

Note that F(X) H F(X)] 1/ 2 E 1 for all X but that F(X) does depend

on scaling of M. We can rescale H and hence M in (21) so that if

intra-period prices %* - (1, ..., 1), they will also be (1, ... , 1)
- t

after normalization, i.e., satisfy [n* H 0 1. Therefore H is
t t

rescaled so that

(22) Rescaled H - H/(n* H %*)

% and M - (Rescaled HI- 1 is then used in (21).

13



Both ways to normalize prices appear to be equally satisfactory from

the view point of the investor figuring his rate of return. However if

(20) is used, we will give an easy proof below that no utility function for

the economy exists; whereas the interesting thing is that if (21) is used,

there is one.

Proof: Assume, on the contrary, that a utility function does exist for

(20). Consider a one period model so that we are maximizing the utility

U(X) subject to the primal constraints (1) and (2). Further suppose X

has only two components so that X1 = (X11, X1 2). Let S, M (S11 ' S1 2),

SI-XI M (S11-X11, S1 2-X12 ). Let %I - (11' it12 ) - [mij] is a 2 x 2

symmetric non-singular matrix. Let

(23) V1 W S 1 - Xl , V2  S 12 - X12 , V - (V , V2 ).

At a maximum the Kuhn-Tucker conditions 6U/8X = i hold. Since

X - S-V, we have from (20)

(24) aU/8X 1 -in 11  (m11V1 + m1 2 V2 )/D ,

(25) bU/X12 it 11 M 12V1 + M22V2)/D ,

where the denominator D - (m1 1+m1 2 )Vl + (m12+m2 2 )V2.

In order for a utility function to exist, the second partial

?2U xI2 computed from (24) should agree with 82 U/ 2X computed

from (25) for all choices of X1 1, X12. Setting these 2nd partials equal

to each other, we obtain

14
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12 "lV 1 + m1 2V2 (m 12 + m22(26) - +- +

m12 + (m12Vl + m2 2V2)(m11 + m 1 2 )

.D D 2
.

which reduces to (mlm22  m12 ) (V - V2 )/D2 = 0, which does not hold
(V~11 22 12 12~ a

for all choices of (X1 1, X1 2) because (Vl-V 2  (S II-X )-(S12-X12), a

contradiction.

On the other hand, if we normalize intra-period prices % by

--- 1/2
%/(%'H% 2 then the equilibrium problem (1), ... , (5) is equivalent to

solving the convex-programming problem:

NATMINATICAL PROGRM1ING MDDEL.

Find Minimum -U(X), (Xt, Yt ) > 0:

T T l/2
* (27) -U(x) - 6- [[(s t-x t M(St - t

t-1

subject to primal flow conditions for t - 1, ,,,, T:

Dual

Corresp.

(28) + BtYt + Dti1YtI + kt : t > 0

-AY +X < 0 :it >0
tt t t

Because H are positive definite matrices, it is not difficult to
t

prove each term of (27) is a convex function in Xt  and hence their sum

-U is also. References [5, 6, 9, 11] discuss the existence of solutions

for convex programs and the techniques for their solution. The primal and

15



dual variables of the optimum solution satisfy the Kuhn-Tucker conditions

which are precisely those of the equilibrium problem (1), ..., (5).

We conclude that the economy will grow if it has the technology and

initial endowments to grow and if it pays to trade off movement of the

consumption vector Xt  away from the "satiation" vector St  in earlier

periods for considerably larger movements towards the satiation in later

periods where the measure of disutility function for period t is given by

(29) -U t (X d -t+l[(s txt) M t (S t-X t

By (4) and (21), -U t (X) - n(St-Xt) so that the disutility is the

discounted additional aggregate income needed to purchase the "satiation"

vector - i.e., the more additional income required the lower the "standard

of living".
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TR SOL 85-6: DERIVING A UTILITY FUNCTION FOR THE ECONOMY
by George B. Dantzig

The model we describe has the same general features of the PILOT

dynamic macro-economic model of U.S. designed to assess the long term impact

of foreign competition, innovation, modernization, and energy needs. We

derive the aggregate demand function of final consumer from individual

demand functions in order to state its mathematical properties; we then

estimate its parameters by a fit to empirical data. The equilibrium

conditions are those of the Arrow-Debreu model, the only unusual feature is

that investors calculate their rate of return using discounted normalized

prices of future periods. If investors choose to normalize intra-period

prices in the usual way by requiring that they sum to unity (or equivalently

their average value is unity), the inverse demand functions turn out to be

non-integrable. Equally satisfactory from the investors' point of view, is

for them to choose instead to normalize intra-period prices by making these

equal to %/(n'HX) I/2 where H is a given positive-definite matrix and

n is the vector of intra-period prices. In the latter case, we show that

the inverse-demand functions are integrable and derive a utility function

for the economy which if maximized subject to the physical-flow constraints

implies the equilibrium conditions.
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